

Manual Professional II Lora

Document Reference: 1490 Version: 1.3 Date: 11.05.2022

Inhaltsverzeichnis

1	LoRa Interface	4
	IT Environment	. 4
	Lora-Server	. 4
	Hardware	. 4
	Note on Installation	
	Start of Operation	
	Example-Integration in The Things Network	. 6
	Service	. 6
2	Operation	7
_	LoRa DevEUI	. 7
	LoRa DevEUI 1/4	
	LoRa JoinStatus 2/4	
	LoRa Status 3/4	
	LoRa JoinMode 4/4	
	LoRa AppKey (only with OTAA)	
	LoRa DevAddr (only with ABP)	
	LoRa NwkSKey (only with ABP)	
	LoRa AppSKey (only with ABP)	
	OTAA Over the Air Activation	
	LoRa Join	
	LoRa Test	
	LoRa Antenna	
	LoRa interface	
	Join Request	
	Test if Lord Module is still conflected to Lord Network	. 10
3	Downlink Messages	11
	Configuration of Measurement Sending	
	Description of Downlink Message	
	Example for 1 minute interval adjustment	. 12
	Example for register transmission	. 12
4	Uplink Message	13
	Join / Rejoin	
	DeviceTimeReq / Time Synchronization	
	Sending of Measurements	13
5	Structure of Uplink Packages	14
	First Telegram after Join with a Lora Server	. 14
	Package Example:	
	Default-Uplink	15
_	Management Deviators	4.0
6	Measurement-Registers	16
	Status Codes	17
7	Structure of Downlink Packages	18
	Structure of a Downlink Package	18
	Konfiguration-Codes	
	CRC-8 Prüfsumme	

Manual Professional II Lora

Doc. Ref	Version	Revision Date	Token	Company	Changes
1491	V1.0	01.07.2021	fbo, met	EMU Electronic AG	Creation of Document
1491	V1.1	22.02.2022	fbo, met	EMU Electronic AG	fixed time interval
1491	V1.2	19.04.2022	met	EMU Electronic AG	fixed unit and resolution
1490	V1.3	11.05.2022	met	EMU Electronic AG	Rework of Doc.Ref numbers. Same document in different language no longer has a different Doc.Ref number

LoRa Interface

This document is a follow up for the EMU Professional II documentation (Doc.Ref 1451).

- The EMU Professional II Lora is compatible to LoraWAN ≥ 1.0.3 (Class C).
- The EMU Professional II Lora permanently saves the needed parameters for Lora and its configuration on the Lora-module.
- A re-parametrization is only possible via the meter display or via a Lora downlink message.
- The EMU Professional II Lora autonomously synchronizes its internal clock at least once per day via a regularly scheduled DeviceTimeReg.
- The EMU Professional II Lora determines and optimizes its own transmit parameters (data rate, SF-factor
- The default meter uses an internal antenna for communication. A meter with an external antenna is only available through special request.

 $rac{1}{2}$ Note: Operation of the EMU Professional II Lora with a SMA-connector is only allowed with an attached

Note: per default the external antenna is deactivated!

Danger: An improperly installed antenna may damage the EMU Professional II Lora!

IT Environment

The Client is responsible for a functioning Lora net-infrastructure (Gateway, Network and Application server).EMU Electronic AG can support the client in installing the chosen solution if requested. The Lora interface can be used with the common gateways like devices from Kerlink or Laird.

Lora-Server

At the time of printing the EMU Professional II Lora has been successfully tested with TheThingsNetwork and Chirpstack. Relevant en- and decoders for both platforms are provided.

https://github.com/emuag/professional II lora

Hardware

The Lora interface of the EMU Professional II LoRa is based on the Lora transmission standard. This means the meter can reliably transmit data over large distances in environments without permanent communication. To ensure a stable and high-performance link to the Lora gateway the meter constantly adapts the optimal transmit and receive parameters independently. For a easier integration into the network you can check the status of the network connection on the display.

- Frequency: EU 863-870MHz
- Type: Class C Device
 - Two-way communication.
 - o The Lora interface is available anytime for downlink messages.
 - o The interface transmits with a signal strength of 14dbm.

Note: In case the EMU Professional II Lora is connected to a Lora network without Class-C support the meter acts as a Class-A device.

 $^{\prime}$ Note: The EMU Professional II Lora operates with an adaptive data rate. Use as a roaming device should be carefully clarified beforehand.

Note on Installation

Make sure to disconnect all current and voltage connections before installation of the external antenna!

Make sure that the SMA connector is fitted correctly. The maximum torque for the union nut must not exceed

You can activate the external antenna in the settings.

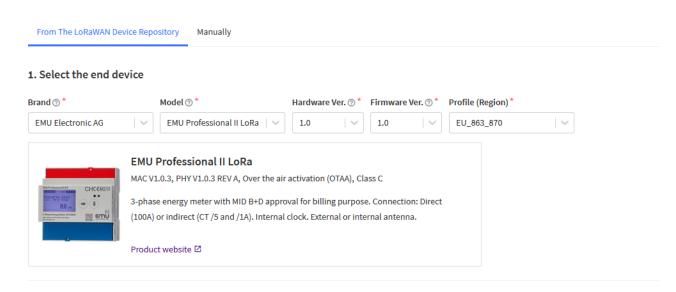
Note: For further documentation please consult the document "User Manual Professional II" Doc.-Ref: 1452

Start of Operation

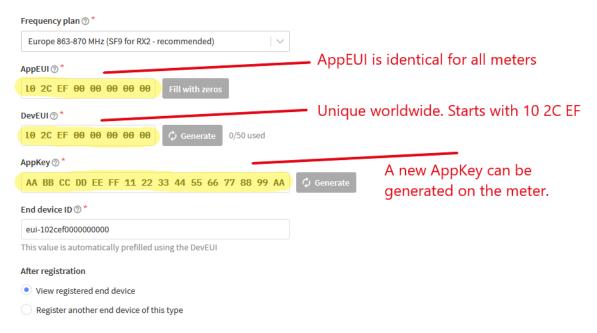
Every meter is shipped with:

- Join-Modus: OTAA
- DeviceEUI (starting with 10-2C-EF)
- Appkey
- App-EUI (10 2C EF 00 00 00 00 00)

The Dev-EUI and the App-Key can be read out on the display, the App-EUI is always 10 2C EF 00 00 00 00 00


- Make sure that the meter is connected correctly (Phase and line sequence, direction of flow of energy).
- Make sure that the current and voltage transformer ratios of the converter counter are configured correctly.
- The EMU Professional II Lora is designed for fast detection of potential problems in connection range or throughput.
- Repositioning of the Lora gateway is possible after the installation of the EMU Professional II Lora. As long as the recommended distances are adhered to, the meter continues to communicate with the Lora server.
- Operation of the meter with a SMA-connector is only allowed with an attached antenna.

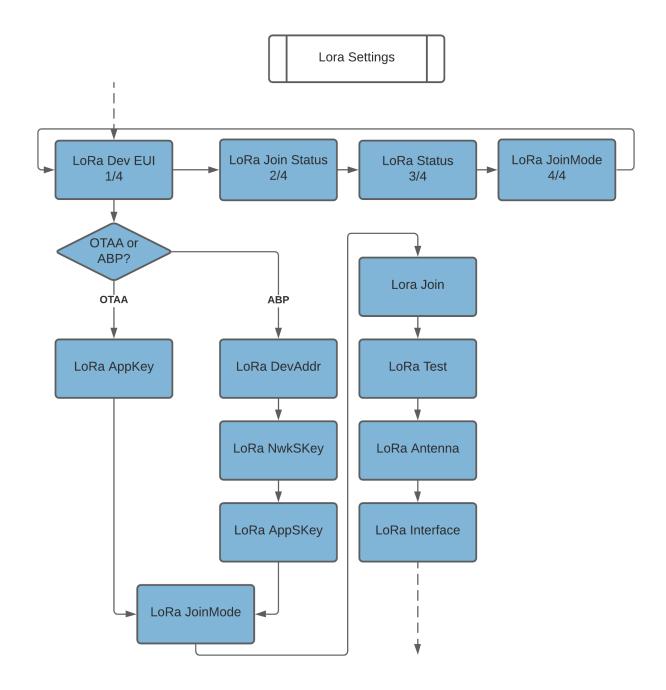
Example-Integration in The Things Network


The EMU Professional II Lora is available for selection on "The Things Network" as a predefined meter.

The AppEUI you need to provide is always 10 2C EF 00 00 00 00 00, the DevEUI and AppKey are individual for each meter.

Register end device

2. Enter registration data


Service

The LoRa interface is designed to monitor its connection to a Lora network. If the connection is severed an automatic Re-Join is done. This monitoring happens at least once every 24 hours. This also allows for easy migration to a new Lora network. If needed you can order the meter to do time based Re-Joins via a downlink.

Operation

The following sub menus explain the settings for the EMU Professional II Lora.

For information on the meter itself please consult the document "User Manual Professional II" Doc.-Ref: 1452

LoRa DevEUI

A long press of the "Arrow Right" button changes the subpage.

LoRa DevEUI 1/4

This page shows the DevEUI of the Lora module. The DevEUI is 64bit, hex-coded.

LoRa JoinStatus 2/4

Joined: If the meter is connected to a Lora network. Lst. Uplink: ACK/NACK (with or without acknowledge)

Timestamp of the last Uplink

LoRa Status 3/4

RSSI: The received field strength

SNR: Signal to noise ratio

SPF: Spreading factor BW: Bandwidth

LoRa JoinMode 4/4

OTAA or ABP

Lst. Downlink: ACK/NACK (with or without acknowledge)

Timestamp of last Downlink

LoRa AppKey (only with OTAA)

A short press of the SRVC button shows the current AppKey. Using the "Arrow right" button you can generate a new AppKey.

A second short press (<2s) of the SRVC button exits the edit mode without changing the AppKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new AppKey and exits the edit mode automatically. The successful generation of a new AppKey is receipted with a short flashing of the display backlight.

The newly created AppKey can now be read out by a short press of the SRVC button.

LoRa DevAddr (only with ABP)

A short press of the SRVC button shows the current DevAddr. Using the "Arrow right" button you can generate a new DevAddr.

A second short press (<2s) of the SRVC button exits the edit mode without changing the DevAddr.

A second long press (>2s) of the SRVC button finalizes the generation of the new DevAddr and exits the edit mode automatically. The successful generation of a new DevAddr is receipted with a short flashing of the display backlight.

The newly created DevAddr can now be read out by a short press of the SRVC button.

LoRa NwkSKey (only with ABP)

A short press of the SRVC button shows the current NwkSKey. Using the "Arrow right" button you can generate a new NwkSKey.

A second short press (<2s) of the SRVC button exits the edit mode without changing the NwkSKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new NwkSKey and exits the edit mode automatically. The successful generation of a new NwkSKey is receipted with a short flashing of the display backlight.

The newly created NwkSKey can now be read out by a short press of the SRVC button.

LoRa AppSKey (only with ABP)

A short press of the SRVC button shows the current AppSKey. Using the "Arrow right" button you can generate a new AppSKey.

A second short press (<2s) of the SRVC button exits the edit mode without changing the AppSKey.

A second long press (>2s) of the SRVC button finalizes the generation of the new AppSKey and exits the edit mode automatically. The successful generation of a new AppSKey is receipted with a short flashing of the display backlight.

The newly created AppSKey can now be read out by a short press of the SRVC button.

LoRa JoinMode (Available with OTAA and ABP)

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select the desired JoinMode.

A second short press (<2s) of the SRVC button exits the edit mode without changing the JoinMode.

A second long press (>2s) of the SRVC button finalizes the new JoinMode and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

Note: After a successful change of the JoinMode you need to provide your LoRa server with the new keys.

OTAA Over the Air Activation

The Lora interface of the EMU Professional II LoRa can use OTAA. The communication module arranges encryption with the Lora network server and joins the network. There can only exist one 1:1 connection between meter and Lora network. This mode of communication offers increased security against third party involvement.

LoRa Join

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select "reboot".

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button starts the (Re-)Join and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

LoRa Test

Send an immediate uplink message with the configuration of slot 1 to the LoRa network.

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" initiates the uplink.

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button starts the uplink and exits the edit mode automatically. The successful send is receipted with a short flashing of the display backlight.

Note: This uplink can only be sent if slot 1 is marked as active.

Note: This uplink can only be sent if no duty cycle restrictions apply.

LoRa Antenna

Allows for easy switching between internal and external antenna.

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" selects the antenna.

A second short press (<2s) of the SRVC button exits the edit mode without changing the antenna configuration.

A second long press (>2s) of the SRVC button saves the selection and exits the edit mode automatically. The successful save is receipted with a short flashing of the display backlight.

DANGER: Make sure the meter is voltage free for the installation of the external antenna. The meter may be damaged from non-observance of installation instructions. Keep to the instructions!

DANGER: The antenna must be attached before changing this setting!

LoRa interface

Allows for a soft reset (Soft-Reset) of the LoRa module or the reset to factory settings (Factory RESET).

A short press of the SRVC button lets you adjust the parameter. Using the "Arrow right" lets you select the reset.

A second short press (<2s) of the SRVC button exits the edit mode without changing anything.

A second long press (>2s) of the SRVC button finalizes the reset and exits the edit mode automatically. The successful reset is receipted with a short flashing of the display backlight.

Note: A reset of the LoRa module does not change or impair any measurements, meter readings or other measurement relevant processes of the EMU Professional II LoRa.

Join Request

As long as no Join request has occured the EMU Professional II Lora regularly tries to connect to a Lora network. These Join requests occur randomly in a \pm 10 min time period to counteract bandwidth problems if multiple meters are in the same network.

Note: The up- and downlink counter is reset to 0 after a restart of the EMU Professional II Lora.

Test if Lora Module is still connected to Lora Network

The EMU Professional II Lora checks its connection to the Lora network at least once per day. You are able to configure the data packages to request an ACK on each uplink transmission. If this option is set the meter can react much faster to a disconnect.

If the EMU Professional II Lora

- receives no ACK on its uplink messages within 24 hours,
- or the connection check (once every 24 hours) for the continued connection to the Lora network fails,

it automatically starts a new (Re-)Join process.

This check for continued connection to the Lora network can also be done via the time synchronization (DeviceTimeReg) or an uplink message to a dedicated fPort with an ACK.

Downlink Messages

The EMU Professional II Lora may acknowledge every received downlink transmission.

Configuration of Measurement Sending

- You can configure which measurement registers should be sent in what interval via a downlink message.
- Only measurements from the data logger and logbook are available for read out.
- There are 10 "Slots" available for this configuration which are represented by the fPorts 1-10.
- Only 10 measurements can be saved per Slot.
- · Lower Slots have a higher priority.
- Per default the following measurement registers are transmitted:
 - See Default-Uplink
- You are able to configure in what interval the data is transmitted. The interval can be set from 1 minutes to a maximum of 67'500 minutes (45 days).
- Do you want your Lora network to send an ACK for every received transmission by the meter: Yes/No?
 - o If Yes: Should the network not acknowledge the package, the meter will send the package again.
- Select if this profile is active or not.

•

Note: If you only change the transmission interval the downlink message will only contain the 2 interval bytes as well as the flags for ACK and active without further register data.

Note: If the Airtime of the meter does not accomodate a too large transmission, the transmission will only be sent partially or not at all.

Description of Downlink Message

The Bit-Order is LSB, the Byte-Order is Little-Endian.

Configuration of which registers are sent.

Length in Bytes: 4 Bytes - 13 Bytes fPort: 1-10

Byte	Description	Example
0-1 2	Time interval in minutes Configurations-Flags	0x01 0x00 - 0xFF 0xFF
3-12	ID's of registers in transmission CRC-8	0x03 see definition

Configuration Flag Byte

Byte	Bit	Description
00000000	1	Settings are unchanged
00000000	2	No ACK expected after upload
00000010	2	ACK expected for each upload
00000100	3	Do a (Re-)Join after ca. 60 minutes to an existing/new network
00000000	3	not defined
00001000	4	Port deactivated

Byte	Bit	Description	
00000000	4	Port activated	
00010000	5	not defined	
00000000	5	not defined	
00100000	6	not defined	
00000000	6	not defined	
01000000	7	not defined	
00000000	7	not defined	

For a list of possible register ID's consult the Measurement-Register

Note: If only Byte 0 + 1 + config-Byte + CRC-8 are sent, the transmission interval and the configuration flags are changed accordingly. The measurement registers are not changed.

Example for 1 minute interval adjustment

```
var data =[0x01, 0x00, 0x08, 0x53];

0x01 0x00 -> 1 Minute interval.
0x08 -> No ACK, no re-join, port is active.
0x53 -> CRC-8 checksum
```

Example for register transmission

This example shows the needed data downlink for an uplink of the energy registers "Active & Reactive Energy Import & Export Tarif 1&2" each minute.

```
var data = [0x01, 0x00, 0x0A, 0x01, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x83]

0x01 0x00 \rightarrow 1 Minute interval

0x0A \rightarrow ACK, no re-join, port is active.

0x01 \rightarrow Timestamp

0x03 - 0x0A \rightarrow Register chosen for uplink.

0x83 \rightarrow CRC-8 Checksum
```

Uplink Message

The following messages can be sent by the EMU Professional II Lora:

- Join / Rejoin request
- Time synchronization
- Monitor network affiliation
- · Sending of measurement registers

Join / Rejoin

The EMU Professional II Lora performs a Join / Rejoin with a Lora network.

DeviceTimeReq / Time Synchronization

While operating normally the EMU Professional II Lora regularly(min. once every 24h, max. once per hour) tries to get the current time and date. The meter adjusts its internal clock according to the following criteria:

- If the old and new time differ less than 2 seconds the meter accepts the new time as a time synchronization and sets the new time.
- If the difference is more than 2 seconds the meter will ask the current time at least 3 more times to make sure the new time is correct.

After start up or if the internal buffer for the RTC is used up the meter verifies the time with at least 3 Device-TimeReg requests. These 3 time requests happen in a 3 minute time frame.

Note: The operator of the Lora infrastructure must ensure that the meter can synchronize its time regularly for proper operation of the EMU Professional II Lora LP. For this the optimal solution is the Lora DeviceTimeReq command.

Sending of Measurements

- The EMU Professional II Lora sends all requested measurement register directly from its data logger via Lora without any changes to the data.
- The requested measurements are read from the data logger at the due date.
- The transmission must therefore begin and end in the transmission interval.

Example of a transmission interval of 15 minutes:

- 09:00:02am: The Lora communication module reads out the latest data logger entry. The values stored there are from 09:00:00am.
- 09:00:03am 09:14:59am: The meter tries to transmit the data via the Lora network.
- 09:15:02am: The Lora communication module reads out the latest data logger entry. The values stored there are from 09:15:00am.

Note: Be aware that, if you operate multiple meters in the same Lora network, transmissions by these meters may collide.

Note: If the EMU Professional II Lora cannot transmit its packages due to network conditions such as SF too high or data rate too slow, the meter only transmits one package of data. All further measurement registers will not be transmitted at a later time. Please make sure to configure your meter and Lora network to allow for the full transmission of data.

Structure of Uplink Packages

The bit order is LSB, the byte order is Little-Endian. The four first bytes are always the timestamp from the data logger.

First Telegram after Join with a Lora Server

fPort: 100 Length: 29

Structure:

Byte	Description
0-3	current system time
4	Type
5-8	Serial number
9	Type
10	Meter type
11	Type
12-13	Current transformer primary
14	Type
15-16	Current transformer secondary
17	Type
18-19	Voltage transformer primary
20	Type
21-22	Voltage transformer secondary
23	Type
24-27	MID year of certification (BCD)
28	CRC 8-bit

Package Example:

```
#System time Wednesday, 16. June 2021 16:08:10 GMT+02:00 -> 1623852490 seconds -> 60CA05
#Serial number 12345678
#Meter type Converter Counter -> 2
#Current transformer ratio 5000:5
#Voltage transformer ratio 1:1
#Mid year of certification 2021
CRC should be 0x68
var data = [0x60, 0xCA, 0x05, 0xCA,
           0xF1, 0x00, 0xBC, 0x61, 0x4E,
           0xF7, 0x02,
           0xF3, 0x13, 0x88,
           0xF4, 0x00, 0x05,
           0xF5, 0x00, 0x01,
           0xF6, 0x00, 0x01,
           0xF8, 0x02, 0x00, 0x02, 0x01,
           0x68];
```

Default-Uplink

After first start up or after resetting to factory settings the meter will send the following telegram:

fPort: 1 Length: 27 Interval: every 15 minutes the most current entry from the meter's data logger. Structure:

Description	
Time stamp	
Тур	0x03
Active energy import L123 T1	
Тур	0x04
Active energy import L123 T2	
Тур	0x05
Active energy export L123 T1	
Тур	0x06
Active energy export L123 T2	
Тур	0xFF
Error code	
CRC 8-bit	
	Time stamp Typ Active energy import L123 T1 Typ Active energy import L123 T2 Typ Active energy export L123 T1 Typ Active energy export L123 T2 Typ Error code

The fPorts 1-10 can be changed individually as described in Downlink Messages.

Measurement-Registers

The energy measurements and technical information is read out of the data logger of the EMU Professional II Lora. These measurements are stored at the end of a measurement period.

Note: Changes to the configuration of the EMU Professional II Lora, e.g. current transformer ratio, are updated at the end of a measurement period in the data logger.

ID	Туре	Description	Unit	Resolution
0x00	ulnt32	Index	Index	
0x01	ulnt32	Time stamp	Time	Epoch
0x02	ulnt32	Original time stamp of the entry	Time	Epoch
0x03	ulnt32	Active energy import L123 T1	Wh	1 Wh
0x04	ulnt32	Active energy import L123 T2	Wh	1 Wh
0x05	ulnt32	Active energy export L123 T1	Wh	1 Wh
0x06	ulnt32	Active energy export L123 T2	Wh	1 Wh
0x07	ulnt32	Reactive energy import L123 T1	varh	1 varh
0x08	ulnt32	Reactive energy import L123 T2	varh	1 varh
0x09	ulnt32	Reactive energy export L123 T1	varh	1 varh
0x0A	ulnt32	Reactive energy export L123 T2	DL	varh
0x0B	Int32	Active power L123	W	1 W
0x0C	Int32	Active power L1	W	1 W
0x0D	Int32	Active power L2	W	1 W
0x0E	Int32	Active power L3	W	1 W
0x0F	Int32	Current L123	mA	1 mA
0x10	Int32	Current L1	mΑ	1 mA
0x10 0x11	Int32	Current L2	mΑ	1 mA
0x11 0x12	Int32	Current L3	mΑ	1 mA
0x12	Int32	Current L4 (neutral phase, only on CT meters)	mA	1 mA
0x13	Int32	Voltage L1-N	V	100 mV
0x14 0x15	Int32	Voltage L2-N	V	100 mV
0x15 0x16	Int32	Voltage L3-N	V	100 mV
0x10 0x17	Int8	Power factor L1	v -11	0.01
0x17 0x18	Int8	Power factor L2	-11 -11	0.01
0x10	Int8	Power factor L3	-11	0.01
0x19	Int16	Frequency	Hz	0.01 0.1 Hz
0x1A 0x1B	Int32	Average Power	W	1 W
0x1C	ulnt32		kWh	1 kWh
0x1C 0x1D	ulnt32	Active energy import L123 T1 Active energy import L123 T2	kWh	1 kWh
0x1E	ulnt32		kWh	1 kWh
0x1E	ulnt32	Active energy export L123 T1 Active energy export L123 T2	kWh	1 kWh
0x1F	ulnt32		kvarh	1 kvarh
0x20 0x21	uint32 uInt32	Reactive energy import L123 T1 Reactive energy import L123 T2	kvarh	1 kvarh
0x21	ulnt32	Reactive energy export L123 T2	kvarh	1 kvarh
0x22	ulnt32	Reactive energy export L123 T1	kvarh	1 kvarh
0x23	uint64	Active energy import L123 T1	Wh	1 Wh
0x24 0x25	uinto4 uInt64	Active energy import L123 T2	Wh	1 Wh
0x25 0x26	uinto4 uInt64		Wh	1 Wh
0x20 0x27	uint64	Active energy export L123 T1 Active energy export L123 T2	Wh	1 Wh
0x27 0x28	ulnt64	Reactive energy import L123 T1	varh	1 varh
0x26 0x29	ulnt64	Reactive energy import L123 T1 Reactive energy import L123 T2	varh	1 varn
0x29 0x2A	uint64 uInt64	Reactive energy export L123 T2	varh	1 varn
0x2B	uint64	Reactive energy export L123 T1	varh	1 varh
0x26 0xF0		Error code	vaiii	ı vaiii
0xF0 0xF1	uInt8 uInt32 Hex	Serial number		
0xF1 0xF2	ulnt32 Hex	Factory number		
0xF2 0xF3	ulnt16	Current transformer primary		
0xF3	ulnt16	Current transformer secondary		
∪∧Γ 4	anitio	Current transformer secondary		

ID	Туре	Description	Resolution	
0xF5	ulnt16	Voltage transformer primary		
0xF6	uInt16	Voltage transformer secondary		
0xF7	uInt8	Meter type		
0xF8	uInt32	MID year of certification		BCD
0xF9	uInt32	Year of manufacture		BCD
0xFA	uInt32	Firmware version		ASCII
0xFB	uInt32	MID Mess-version		ASCII
0xFC	uInt32	Manufacturer		ASCII
0xFD	uInt32	Hardware index		ASCII
0xFE	uInt32	Current system time	Time	Epoch

For possible values of the error code please consult the chapter Status Codes

Status Codes

Bit Order	Description
0	Time set
1	Current transformer ratio adjusted
2	Voltage transformer ratio adjusted
3	Impulse Length adjusted
4	Impulse Ratio adjusted
5	Voltage Interruption
6	Time not valid or not synchronized
7	Logbook full

Structure of Downlink Packages

You are able to configure which energy registers are transmitted via Lora. This allows for an individual adjustment of the package and the optimization of data transmission. For each of the measurements the unit can be chosen freely.

Furthermore you are able to choose the transmission interval (Min. 15 minutes, max. 24 hours).

Structure of a Downlink Package

Bytes	Туре	Description	Unit
0-1 2 3-12	ulnt16 ulnt8 ulnt8 ulnt8	Transmission interval Configuration ID's der zu sendenden Register CRC-8	minutes see Configuration codes 0x00 bis 0xFE

Konfiguration-Codes

Bit Order	Example	Description
0-7	0x00	current settings are not changed
2	0.	No ACK after an uplink: SndAck Off
2	1.	Alway ACK for uplink transmission: SndAck On
3	1	(Re-)Join after ca. 60 minutes into a new network
3	0	not used
4	1	Port activated
4	0	Port deactivated
5	1	reserved
5	0	reserved
6	.1	reserved
6	.0	reserved
7	1	reserved
7	0	reserved

CRC-8 Prüfsumme

The checksum is based on the following polynom: $x^8 + x^2 + x^1 + x^0$ (CRC-8-CCITT) Example implementation in Javascript:

```
function crc8 encode(data) {
    var xorOut = 0x0000;
    var table = [
        0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B,
        0x12, 0x15, 0x38, 0x3F, 0x36, 0x31,
        0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77,
        0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
        0x48, 0x4F, 0x46, 0x41, 0x54, 0x53,
        0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9,
        0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF,
        0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
        0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B,
        0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1,
        0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0,
        0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
        0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4,
        0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE,
        0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88,
        0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
        0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C,
        0x35, 0x32, 0x1F, 0x18, 0x11, 0x16,
        0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50,
        0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
        0x6F, 0x68, 0x61, 0x66, 0x73, 0x74,
        0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80,
        0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6,
        0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
        0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2,
        OxEB, OxEC, OxC1, OxC6, OxCF, OxC8,
        0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E,
        0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
        0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A,
        0x43, 0x44, 0x19, 0x1E, 0x17, 0x10,
        0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26,
        0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
        0x4E, 0x49, 0x40, 0x47, 0x52, 0x55,
        0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F,
        0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39,
        0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
        0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D,
        0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7,
        0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91,
        0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
        0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5,
        OxCC, OxCB, OxE6, OxE1, OxE8, OxEF,
        0xFA, 0xFD, 0xF4, 0xF3
    ];
    var crc = 0x0000;
    for (var j = 0; j < data.length; <math>j++) {
        crc = table[crc ^ data[j]];
    return (crc ^ xorOut) & 0xFFFF;
}
```


EMU Electronic AG Jöchlerweg 2 CH-6340 Baar Switzerland

Phone: +41 (0)41 545 03 00

helpdesk@emuag.ch www.emuag.ch